RECITATION 11 APPLICATIONS OF OPTIMIZATION

James Holland

2019-11-12

Section 1. Exercises

Exercise 1

Cost of making x > 0 amount: $C(x) = x^2 + 5x - 8$. Price of each: p(x) = 9 - x. Maximize profit.

Solution .:.

Profit is $P(x) = x \cdot p(x) - C(x) = (9x - x^2) - x^2 - 5x + 8 = -2x^2 + 4x + 8$. To maximize profit, P'(x) = -4x + 4 which is 0 iff x = 1. It's clear that this is a maximum by the second derivative test. Thus P(1) = 10 is the maximum profit.

– Exercise 2 –

Cost of making x > 0: $C(x) = e^x$. Minimize average cost.

Solution .:.

 $A(x) = C(x)/x = e^x/x$. Using the product rule, $A'(x) = \frac{e^x}{x} - \frac{e^x}{x^2}$. A'(x) = 0 iff $e^x/x = e^x/x^2$ iff $x^2 = x$ iff x = 1 (recall that $x \neq 0$ for the average to make sense). $A''(x) = e^x/x - 2e^x/x^2 + 2e^x/x^3$ so that A''(1) = e - 2e + 2e = e > 0 and hence we have a minimum of $A(1) = e^1/1 = 1$.

- Exercise 3 -

Cost of making x > 0: $C(x) = x^2 + 2x - 1$. Price of each: $p(x) = \ln(x) + \sin(x)$. Calculate marginal cost; Calculate marginal revenue.

Solution .:.

Marginal cost is C'(x) = 2x + 2. Marginal revenue is $\frac{d}{dx}xp(x) = \frac{d}{dx}x\ln(x) + x\sin(x)$. Using the product rule, this is just $\ln(x) + 1 + \sin(x) + x\cos(x)$.

– Exercise 4 –

Cost of making x > 0: $C(x) = x^2 + 4$. Calculate minimum average cost.

Solution .:.

Average cost is A(x) = C(x)/x = x + 4/x. To find the minimum of this function, we find critical numbers: $A'(x) = 1 - 4/x^2$ which is 0 iff $1 = 4/x^2$, i.e. $x = \pm 2$ and since x > 0, we get that x = 2. $A'(x) = (x^2 - 4)/x^2$ which has the same sign as $x^2 - 4$ (since dividing by a positive number like x^2 doesn't change the sign). For 0 < x < 2, A'(x) < 0 since $x^2 < 4$. For x > 2, A'(x) > 0 since $x^2 - 4 > 0$. Thus this is a minimum for average

RECITATION 11

cost, and this minimum average cost is A(2) = 2 + 4/2 = 4.

- Exercise 5 -

Cost of making x > 0: $C(x) = x(10 - \cos(x))$. Calculate minimum average cost.

Solution .:.

Average cost is $A(x) = C(x)/x = 10 - \cos(x)$. $A'(x) = \sin(x)$ which is 0 iff $x = \pi n$ for n > 0 an integer. At these values, $\cos(x) = \pm 1$ so that $A(2\pi) = A(4\pi) = \cdots = 10 - 1 = 9$ is the minimum average cost while $A(\pi) = A(3\pi) = \cdots = 10 - (-1) = 11$ is the maximum average cost.

— Exercise 6 —

Cost of making x > 0: $C(x) = 2(x - 5)e^{x-5}$. Price of each: $p(x) = e^{x-5}$. Calculate the maximum profit.

Solution .:.

Profit is given by revenue $R(x) = x \cdot p(x)$ and cost: profit $P(x) = xp(x) - C(x) = xe^{x-5} - 2xe^{x-5} + 10e^{x-5} = 10e^{x-5} - xe^{x-5}$. To maximize P(x), as always, we look at the critical points, and classify them. By the product rule,

$$P'(x) = 10e^{x-5} - e^{x-5} - xe^{x-5} = 9e^{x-5} - xe^{x-5} = (9-x)e^{x-5}$$

Since e^{x-5} is never 0, P'(x) = 0 iff (9-x) = 0, i.e. x = 9. Now we can form a number line. For x < 9, P'(x) > 0 so that P is increasing there. For x > 9, P'(x) < 0 so that P is decreasing there. Hence by the first derivative test, x = 9 yields the max value of P: $P(9) = 10e^4 - 9e^4 = e^4$.