RECITATION 11 APPLICATIONS OF OPTIMIZATION

James Holland

2019-11-12

Section 1. Exercises

- Exercise 1

Cost of making $x>0$ amount: $C(x)=x^{2}+5 x-8$.
Price of each: $p(x)=9-x$. Maximize profit.

Solution .:.

Profit is $P(x)=x \cdot p(x)-C(x)=\left(9 x-x^{2}\right)-x^{2}-5 x+8=-2 x^{2}+4 x+8$. To maximize profit, $P^{\prime}(x)=-4 x+4$ which is 0 iff $x=1$. It's clear that this is a maximum by the second derivative test. Thus $P(1)=10$ is the maximum profit.

Exercise 2

Cost of making $x>0$: $C(x)=e^{x}$.
Minimize average cost.

Solution .:

$A(x)=C(x) / x=e^{x} / x$. Using the product rule, $A^{\prime}(x)=\frac{e^{x}}{x}-\frac{e^{x}}{x^{2}} . A^{\prime}(x)=0$ iff $e^{x} / x=e^{x} / x^{2}$ iff $x^{2}=x$ iff $x=1$ (recall that $x \neq 0$ for the average to make sense). $A^{\prime \prime}(x)=e^{x} / x-2 e^{x} / x^{2}+2 e^{x} / x^{3}$ so that $A^{\prime \prime}(1)=e-2 e+2 e=e>0$ and hence we have a minimum of $A(1)=e^{1} / 1=1$.

$$
\begin{aligned}
& \text { Exercise } 3 \text { - } \begin{array}{l}
\text { Cost of making } x>0: C(x)=x^{2}+2 x-1 \\
\text { Price of each: } p(x)=\ln (x)+\sin (x) . \\
\text { Calculate marginal cost; } \\
\text { Calculate marginal revenue. }
\end{array} \text {. }
\end{aligned}
$$

Solution :

Marginal cost is $C^{\prime}(x)=2 x+2$.
Marginal revenue is $\frac{\mathrm{d}}{\mathrm{d} x} x p(x)=\frac{\mathrm{d}}{\mathrm{d} x} x \ln (x)+x \sin (x)$. Using the product rule, this is just $\ln (x)+1+\sin (x)+$ $x \cos (x)$.

Exercise 4
Cost of making $x>0: C(x)=x^{2}+4$.
Calculate minimum average cost.

Solution .:

Average cost is $A(x)=C(x) / x=x+4 / x$. To find the minimum of this function, we find critical numbers: $A^{\prime}(x)=1-4 / x^{2}$ which is 0 iff $1=4 / x^{2}$, i.e. $x= \pm 2$ and since $x>0$, we get that $x=2 . A^{\prime}(x)=\left(x^{2}-4\right) / x^{2}$ which has the same sign as $x^{2}-4$ (since dividing by a positive number like x^{2} doesn't change the sign). For $0<x<2, A^{\prime}(x)<0$ since $x^{2}<4$. For $x>2, A^{\prime}(x)>0$ since $x^{2}-4>0$. Thus this is a minimum for average
cost, and this minimum average cost is $A(2)=2+4 / 2=4$.

- Exercise 5

Cost of making $x>0$: $C(x)=x(10-\cos (x))$.
Calculate minimum average cost.
Solution .:
Average cost is $A(x)=C(x) / x=10-\cos (x) . A^{\prime}(x)=\sin (x)$ which is 0 iff $x=\pi n$ for $n>0$ an integer. At these values, $\cos (x)= \pm 1$ so that $A(2 \pi)=A(4 \pi)=\cdots=10-1=9$ is the minimum average cost while $A(\pi)=A(3 \pi)=\cdots=10-(-1)=11$ is the maximum average cost.

Exercise 6

Cost of making $x>0$: $C(x)=2(x-5) e^{x-5}$.
Price of each: $p(x)=e^{x-5}$.
Calculate the maximum profit.

Solution .:

Profit is given by revenue $R(x)=x \cdot p(x)$ and cost: profit $P(x)=x p(x)-C(x)=x e^{x-5}-2 x e^{x-5}+10 e^{x-5}=$ $10 e^{x-5}-x e^{x-5}$. To maximize $P(x)$, as always, we look at the critical points, and classify them. By the product rule,

$$
P^{\prime}(x)=10 e^{x-5}-e^{x-5}-x e^{x-5}=9 e^{x-5}-x e^{x-5}=(9-x) e^{x-5}
$$

Since e^{x-5} is never $0, P^{\prime}(x)=0$ iff $(9-x)=0$, i.e. $x=9$. Now we can form a number line. For $x<9$, $P^{\prime}(x)>0$ so that P is increasing there. For $x>9, P^{\prime}(x)<0$ so that P is decreasing there. Hence by the first derivative test, $x=9$ yields the max value of $P: P(9)=10 e^{4}-9 e^{4}=e^{4}$.

